





### SCANNING ELECTRON MICROSCOPY SCHEME (SEMS)

| Laboratory No. | 1640 | Name Of Laboratory        | CRB Analyse Service GmbH |  |
|----------------|------|---------------------------|--------------------------|--|
| Round No.      | 014B | Laboratory Representative | Stefan Pierdzig          |  |
|                |      | E-Mail Address            | pierdzig@crb-gmbh.de     |  |
|                |      |                           |                          |  |
| Report No.     | 1024 | Report Issued             | Nov 11 2024 8:05AM       |  |

| SAMPLE | No | Amphibole Density | Chrysotile Density | Inorganic Density | Total Asbestos | Median | Band |
|--------|----|-------------------|--------------------|-------------------|----------------|--------|------|
|        | 1  | 118.00            | 0.00               | 0.00              | 118.00         | 109.1  | Α    |
| 1      | 2  |                   |                    |                   |                |        |      |
|        | 3  |                   |                    |                   |                |        |      |
|        | 1  | 0.00              | 41.50              | 0.00              | 41.50          | 55.5   | Α    |
| 2      | 2  |                   |                    |                   |                |        |      |
|        | 3  |                   |                    |                   |                |        |      |
|        | 1  | 0.00              | 41.50              | 0.00              | 41.50          | 40.8   | Α    |
| 3      | 2  |                   |                    |                   |                |        |      |
|        | 3  |                   |                    |                   |                |        |      |
|        | 1  | 33.50             | 0.00               | 0.00              | 33.50          | 30     | Α    |
| 4      | 2  |                   |                    |                   |                |        |      |
|        | 3  |                   |                    |                   |                |        |      |

#### **Total Number In Each Band**

-C

-B

Α

В

C

0 0

0

0

Details of performance assessement are given in

'SEMS Information For Participants'.

**Number Of Valid Results** 

4

**Results Within Band A** 

100%

Results Within Band A + B

4

4

100%

#### **Melanie Clunas**

SEM Scheme Co-Ordinator Fibres & Minerals Team



**HSE, Science Division** 

Harpur Hill, Buxton, Derbyshire SK17 9JN - UK

Report No.: 1024



**Group Report** Round 14B



November 2024

# Scanning Electron Microscopy Scheme

#### BACKGROUND

This report covers Round 14B of the SEMS asbestos fibre counting PT scheme. The scheme is operated by HSE, in collaboration with APC, Germany and TNO, Netherlands.

#### **SAMPLES**

Four samples were circulated representing a range of different fibre densities and fibre types. All samples were produced at HSE using the modified sputnik multi-port sampling instrument.

#### INTRODUCTION

A total of 65 laboratories participated in this round (including the validating laboratories). Laboratories were able to submit up to three results per sample and many laboratories took advantage of this with a total of 399 results submitted.

The samples were as follows:

14BSEMS1 – High density (109.1 fibres/mm<sup>2</sup>) – amosite fibres

14BSEMS2 – High density (55.5 fibres/mm<sup>2</sup>) - chrysotile fibres

14BSEMS3 – Medium density (40.8 fibres/mm<sup>2</sup>) – chrysotile fibres

14BSEMS4 – Medium density (30.0 fibres/mm<sup>2</sup>) – amosite fibres

#### INFORMATION SUBMITTED BY LABORATORIES

Laboratories were asked to supply the following information:

- Number of fibres >5µm in length counted (amphibole, chrysotile & other inorganic)
- The number of fields of view searched
- The area of the field of view
- The magnification and the method used

Laboratories were asked to calculate the fibre density (in fibres/mm<sup>2</sup>) for each fibre type identified. There was also an option to include the number of fibres ≤5µm in length.



#### LABORATORY ASSESSMENT

#### **RESULTS**

**Calculations –** One laboratory did not submit results for 14BSEMS2 & 14BSEMS3.

Screen area - The fibre densities submitted by laboratories have not been recalculated and the density calculation and therefore screen area has not been verified.

Magnification – As was the case in earlier rounds, some laboratories used an operating magnification outside the range defined in ISO 14966 (or VDI 3492).

Magnifications ranging from 750x to 4500x were recorded.

Results for total asbestos fibre densities for each laboratory are summarised in Appendix 1.

#### **Data Analysis**

Data analysis is based upon the total asbestos fibre densities (amphibole & chrysotile) derived from fibre numbers counted and the area of the filter searched. The distribution of fibres on a filter derived from airborne sampling is normally described as being Poisson-distributed. For Poisson-distributed counts, the variance (standard deviation squared) is equal to the mean. However, in practice the variation may be larger due to differences in sample production, laboratories and individual microscopists.

A comparison of the observed standard deviations with the expected standard deviations (expected under Poisson distribution) show that the observed variation is larger than that expected, and it is difficult to quantify how much of this may be due to differences in sample production, and how much is due to differences between labs/microscopists.

For this report, the data have been compared against the criteria used in the UK phase contrast fibre counting proficiency testing scheme RICE. Details of the analysis used can be found in Appendix 2.

#### **Round 14B Overview**

Summary statistics from this round of results are displayed in Table 1. Below this, Figure 1 displays the percentage of participants in each scoring band (as per the RICE scoring system). Figures 2 and 3 show the band scored by participants divided according to magnification and method used respectively.

Table 1: Summary statistics for results received in SEMS Round 14B.

|                                  | Sample<br>1 | Sample<br>2 | Sample<br>3 | Sample<br>4 |
|----------------------------------|-------------|-------------|-------------|-------------|
| Number of results                | 100         | 100         | 100         | 99          |
| Median (fibres/mm²)              | 109.1       | 55.5        | 40.8        | 30.0        |
| 25th percentile (fibres/mm²)     | 86.7        | 39.1        | 25.0        | 21.7        |
| 75th percentile (fibres/mm²)     | 122.5       | 73.2        | 53.6        | 36.4        |
| Interquartile range (fibres/mm²) | 35.8        | 34.1        | 28.6        | 14.7        |
| Mean (fibres/mm²)                | 108.3       | 56.9        | 41.2        | 28.9        |
| Standard deviation (fibres/mm²)  | 57.8        | 31.1        | 24.5        | 13.2        |
| Relative standard deviation (%)  | 53.3        | 56.1        | 59.4        | 45.6        |

Note: The relative standard deviation (RSD) is calculated by (standard deviation/mean)\*100%. This statistic illustrates the variation relative to the size of the mean value. For very low values of the mean (e.g. Sample 1), the value of the RSD can be considered largely meaningless.

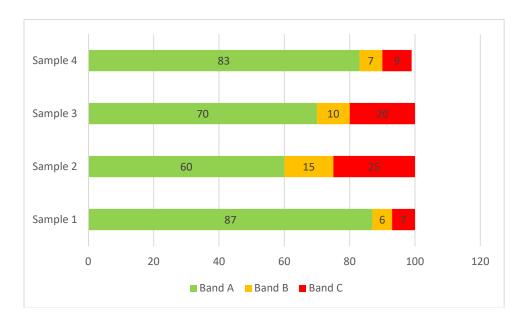



Figure 1: Banded scores for participants in SEMS Round 14B (categorised as per RICE scoring system - see Appendix 2)

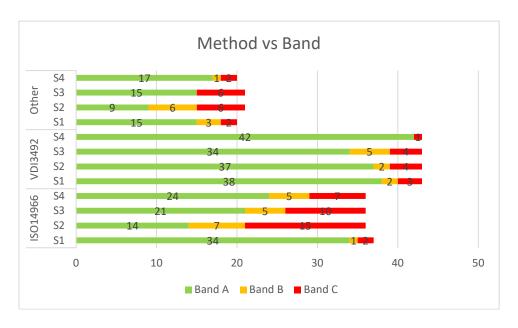



Figure 2: Banded scores for participants in SEMS Round 14B divided according to method used

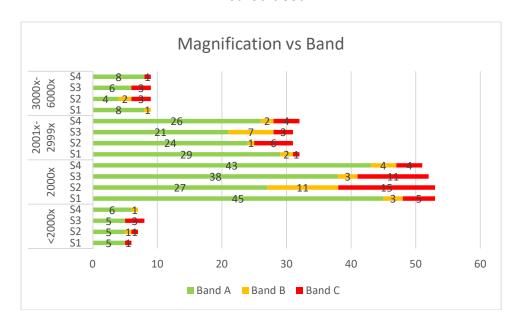



Figure 3: Banded scores for participants in SEMS Round 14B divided according to magnification use

Sample 1 (14BSEM1) - High density (109.1 fibres/mm²) - amosite fibres

| LAB<br>NUMBER | TOTAL<br>ASBESTOS | BAND<br>(RICE) |
|---------------|-------------------|----------------|
| 139           | 84.87             | А              |
| 139           | 95.12             | Α              |
| 709           | 140.5             | Α              |
| 818           | 59.7              | В              |
| 818           | 152.6             | А              |
| 1181          | 92                | Α              |
| 1277          | 105.2             | А              |
| 1458          | 98                | А              |
| 1458          | 114               | А              |
| 1507          | 115.9             | А              |
| 1546          | 75.92             | А              |
| 1558          | 88                | А              |
| 1562          | 113.7             | А              |
| 1562          | 115.2             | А              |
| 1562          | 117.7             | А              |
| 1569          | 129               | А              |
| 1575          | 55.8              | В              |
| 1575          | 57.6              | В              |
| 1575          | 78.9              | А              |
| 1592          | 111               | А              |
| 1640          | 118               | А              |
| 1646          | 107.864           | А              |
| 1649          | 90                | А              |
| 1680          | 75                | А              |
| 1680          | 79.3              | А              |
| 1680          | 91.7              | А              |
| 1715          | 64.29             | В              |
| 1717          | 107.8             | А              |
| 1717          | 113.6             | А              |
| 1717          | 116.3             | А              |
| 1718          | 16                | С              |
| 1718          | 44.5              | С              |
| 1734          | 85                | Α              |
| 1734          | 132               | Α              |
| 1738          | 105.2             | А              |
| 1745          | 72.1              | А              |
| 1759          | 126.7             | А              |
| 1759          | 136.6             | А              |
| 1759          | 162.9             | А              |
| 1768          | 128.13            | Α              |

| i    |         |   |
|------|---------|---|
| 1768 | 133.33  | А |
| 1768 | 153.95  | А |
| 1774 | 113     | Α |
| 1776 | 91      | Α |
| 1812 | 102     | Α |
| 1812 | 112     | Α |
| 1812 | 116.5   | Α |
| 1814 | 77.7    | Α |
| 1826 | 159.74  | А |
| 1832 | 86.5    | А |
| 1832 | 109.5   | Α |
| 1836 | 86.73   | А |
| 1888 | 122     | Α |
| 1910 | 116     | Α |
| 1938 | 118     | А |
| 1958 | 80.3    | Α |
| 1963 | 47      | С |
| 1963 | 60      | В |
| 1966 | 102     | Α |
| 1984 | 126.94  | Α |
| 1984 | 130.6   | Α |
| 1984 | 149.68  | Α |
| 1990 | 93      | Α |
| 1990 | 115     | Α |
| 1990 | 137     | Α |
| 2026 | 132.2   | А |
| 2026 | 142.9   | Α |
| 2032 | 43.5    | С |
| 2076 | 120     | А |
| 2076 | 131     | Α |
| 2116 | 100     | А |
| 2159 | 84.1583 | А |
| 2168 | 89.8    | А |
| 2168 | 93.1    | Α |
| 2168 | 102.8   | А |
| 2174 | 145.59  | А |
| 2191 | 115.37  | А |
| 2191 | 124.7   | А |
| 2194 | 108.9   | Α |
| 2194 | 119.1   | А |
| 2194 | 128.1   | А |
| 2202 | 90.68   | A |
| 2203 | 138.89  | A |
| 2207 | 108     | A |
| 2207 | 127     | A |
| 2211 | 78.5    | A |
|      | , 0.3   |   |



| 2211 | 79.5    | Α |
|------|---------|---|
| 2211 | 87      | Α |
| 2215 | 109.26  | Α |
| 2230 | 116.18  | Α |
| 2230 | 118.17  | А |
| 2251 | 120.4   | Α |
| 2259 | 123.91  | Α |
| 2260 | 30.5    | С |
| 2284 | 94      | Α |
| 2307 | 114     | Α |
| 2317 | 88.568  | А |
| 2324 | 50      | С |
| 2332 | 604     | С |
| 2344 | 56.9784 | В |

Mean 108.3 Median (Ref) 109.1 STDev 57.8 Min 16 Max 604

| RICE A  | RICE A  | RICE B  | RICE B  | RICE C  | RICE C  |
|---------|---------|---------|---------|---------|---------|
| (Lower) | (Upper) | (Lower) | (Upper) | (Lower) | (Upper) |
| 70.9    | 169.0   | 54.6    | 218.2   | <54.6   | >218.2  |

Sample 2 (14BSEM2) - High density (55.5 fibres/mm<sup>2</sup>) - chrysotile fibres

| 139 45.36 A<br>139 45.85 A |  |
|----------------------------|--|
|                            |  |
| =00                        |  |
| 709 66 A                   |  |
| 818 54.7 A                 |  |
| 818 93 B                   |  |
| 1181 23 C                  |  |
| 1277 105.8 B               |  |
| 1458 56 A                  |  |
| 1458 60 A                  |  |
| 1507 70.79 A               |  |
| 1546 80.075 A              |  |
| 1558 31 B                  |  |
| 1562 118 C                 |  |
| 1562 118.2 C               |  |
| 1562 128 C                 |  |
| 1569 7 C                   |  |
| 1575 24.1 C                |  |
| 1575 34.7 A                |  |
| 1575 38.4 A                |  |
| 1592 104 B                 |  |
| 1640 41.5 A                |  |
| 1646 61.091 A              |  |
| 1649 57.03 A               |  |
| 1680 92.6 B                |  |
| 1680 94.7 B                |  |
| 1680 97 B                  |  |
| 1715 91.68 B               |  |
| 1717 49.7 A                |  |
| 1717 51.2 A                |  |
| 1717 51.4 A                |  |
| 1718 15.5 C                |  |
| 1718 20.5 C                |  |
| 1734 69 A                  |  |
| 1734 74 A                  |  |
| 1738 47.6 A                |  |
| 1745 73.1 A                |  |
| 1759 0 C                   |  |
| 1759 0 C                   |  |
| 1759 0 C                   |  |
| 1768 32.89 B               |  |

| 1768 | 39.39  | Α |
|------|--------|---|
| 1768 | 40.35  | А |
| 1774 | 101    | В |
| 1776 | 62     | Α |
| 1812 | 48     | А |
| 1812 | 51     | Α |
| 1812 | 52     | Α |
| 1814 | 94.1   | В |
| 1826 | 94.63  | В |
| 1832 | 58     | А |
| 1832 | 66     | А |
| 1836 | 41.87  | Α |
| 1888 | 3      | С |
| 1910 | 75     | А |
| 1938 | 59     | Α |
| 1958 | 45.3   | Α |
| 1963 | 12     | С |
| 1963 | 18     | С |
| 1966 | 66.4   | Α |
| 1984 | 53.56  | Α |
| 1984 | 54.3   | Α |
| 1984 | 62.37  | Α |
| 1990 | 55     | Α |
| 1990 | 62     | Α |
| 1990 | 72     | Α |
| 2026 | 47.3   | Α |
| 2026 | 58.2   | Α |
| 2026 | 70     | Α |
| 2032 | 5      | С |
| 2076 | 87     | Α |
| 2076 | 88     | Α |
| 2116 | 64     | Α |
| 2159 | 37.624 | Α |
| 2168 | 101.9  | В |
| 2168 | 106.5  | В |
| 2168 | 117.6  | С |
| 2174 | 56.84  | Α |
| 2191 | 43.2   | Α |
| 2191 | 72.17  | Α |
| 2194 | 14.69  | С |
| 2194 | 19.18  | С |
| 2194 | 30.6   | В |
| 2202 | 45.09  | Α |
| 2203 | 51.59  | A |
| 2207 | 17     | С |
| 2207 | 24.5   | С |
|      |        |   |



| 2211 | 39.5   | Α |
|------|--------|---|
| 2211 | 40.5   | Α |
| 2211 | 58     | Α |
| 2215 | 117.24 | С |
| 2230 | 71     | А |
| 2230 | 81.43  | Α |
| 2251 | 118    | С |
| 2259 | 51.51  | А |
| 2260 | 0      | С |
| 2284 | 19     | С |
| 2307 | 70     | А |
| 2317 | 70.854 | Α |
| 2324 | 73.5   | Α |
| 2344 | 6.8585 | С |

| Mean   | 56.9 |
|--------|------|
| Median |      |
| (Ref)  | 55.5 |
| STDev  | 31.1 |
| Min    | 0    |
| Max    | 128  |

| RICE A  | RICE A  | RICE B  | RICE B  | RICE C  | RICE C  |
|---------|---------|---------|---------|---------|---------|
| (Lower) | (Upper) | (Lower) | (Upper) | (Lower) | (Upper) |
| 34.6    | 88.5    | 26.1    | 115.6   | <26.1   |         |



Sample 3 (14BSEM3) - Medium density (40.8 fibres/mm²) - chrysotile fibres

| LAB<br>NUMBER | TOTAL<br>ASBESTOS                 | BAND<br>(RICE) |  |
|---------------|-----------------------------------|----------------|--|
| 139           | 29.26                             | Α              |  |
| 139           | 30.24                             | Α              |  |
| 709           | 50                                | Α              |  |
| 818           | 68.7                              | Α              |  |
| 818           | 96.9                              | С              |  |
| 1181          | 9                                 | С              |  |
| 1277          | 35.8                              | Α              |  |
| 1458          | 35                                | А              |  |
| 1458          | 52                                | А              |  |
| 1507          | 68.9                              | А              |  |
| 1546          | 13.828                            | С              |  |
| 1558          | 25                                | А              |  |
| 1562          | 80.3                              | В              |  |
| 1562          | 94.6                              | С              |  |
| 1562          | 103.5                             | С              |  |
| 1569          | 5.5                               | С              |  |
| 1575          | 19.2                              | В              |  |
| 1575          | 20.8                              | В              |  |
| 1575          | 23.8                              | Α              |  |
| 1592          | 57                                | Α              |  |
| 1640          | 41.5                              | Α              |  |
| 1646          | 36.273                            | Α              |  |
| 1649          | 40.5                              | Α              |  |
| 1680          | 55                                | А              |  |
| 1680          | 56.7                              | Α              |  |
| 1680          | 60.7                              | Α              |  |
| 1715          | 41.58                             | А              |  |
| 1717          | 30.5                              | А              |  |
| 1717          | 32.5                              | А              |  |
|               | 1717 32.5<br>1717 44.3<br>1718 15 |                |  |
|               |                                   |                |  |
| 1718          | 16.5                              | C<br>B         |  |
| 1734          | 24                                | A              |  |
| 1734          | 41                                | A              |  |
| 1738          | 37                                | A              |  |
| 1745          | 47.4                              | A              |  |
| 1759          | 0                                 | C              |  |
| 1759          | 0                                 | С              |  |
| 1759          | 0                                 | С              |  |
| 1768          | 20.18                             | В              |  |
| 1768          | 23.68                             | A              |  |
| 1700          | 23.00                             |                |  |



| 1768   31.47   A     1774   56   A     1776   50   A     1812   33   A     1812   38.5   A     1812   42   A     1814   58.3   A     1826   67.36   A     1832   53.5   A     1832   55.5   A     1836   63.8   A     1838   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1964   44.4   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   49   A     2026   38.4   A     2026   51.3   A     2026   51.3   A     2026   51.3   A |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1776 50 A   1812 33 A   1812 38.5 A   1812 42 A   1814 58.3 A   1826 67.36 A   1832 53.5 A   1832 55 A   1836 63.8 A   1888 4 C   1910 66 A   1938 33 A   1958 44.1 A   1963 7 C   1963 13 C   1966 44.4 A   1984 35.22 A   1984 35.95 A   1990 48 A   1990 48 A   1990 49 A   2026 38.4 A   2026 51.3 A   2032 4.5 C   2076 52 A   2116 54 A                                                                                                                                                                                     |
| 1812   33   A     1812   38.5   A     1814   58.3   A     1826   67.36   A     1832   53.5   A     1836   63.8   A     1838   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1964   44.4   A     1984   32.28   A     1984   35.95   A     1990   48   A     1990   49   A     1990   49   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   52   A     2116   54   A                                                             |
| 1812   38.5   A     1812   42   A     1814   58.3   A     1826   67.36   A     1832   53.5   A     1832   55   A     1836   63.8   A     1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1966   44.4   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   48   A     1990   49   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   52   A     2116   54   A                                           |
| 1812   42   A     1814   58.3   A     1826   67.36   A     1832   53.5   A     1836   63.8   A     1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1964   44.4   A     1984   32.28   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   52   A     2116   54   A                                                            |
| 1814   58.3   A     1826   67.36   A     1832   53.5   A     1836   63.8   A     1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   52   A     2116   54   A                                                                                                   |
| 1826   67.36   A     1832   53.5   A     1836   63.8   A     1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.22   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   52   A     2116   54   A                                                                                                                       |
| 1832   53.5   A     1832   55   A     1836   63.8   A     1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                        |
| 1832   55   A     1836   63.8   A     1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                            |
| 1836   63.8   A     1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1964   13   C     1965   44.4   A     1984   32.28   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                              |
| 1888   4   C     1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1964   13   C     1965   44.4   A     1984   32.28   A     1984   35.22   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                  |
| 1910   66   A     1938   33   A     1958   44.1   A     1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.92   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                   |
| 1938   33   A     1958   44.1   A     1963   7   C     1966   44.4   A     1984   32.28   A     1984   35.22   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                       |
| 1958   44.1   A     1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                  |
| 1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                      |
| 1963   7   C     1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                      |
| 1963   13   C     1966   44.4   A     1984   32.28   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                                       |
| 1966   44.4   A     1984   32.28   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                                                         |
| 1984   32.28   A     1984   35.22   A     1984   35.95   A     1990   48   A     1990   49   A     1990   56   A     2026   38.4   A     2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                                                                             |
| 1984 35.22 A   1984 35.95 A   1990 48 A   1990 49 A   1990 56 A   2026 38.4 A   2026 43.4 A   2026 51.3 A   2032 4.5 C   2076 41 A   2076 52 A   2116 54 A                                                                                                                                                                                                                                                                                                                                                                        |
| 1984 35.95 A   1990 48 A   1990 49 A   1990 56 A   2026 38.4 A   2026 43.4 A   2026 51.3 A   2032 4.5 C   2076 41 A   2076 52 A   2116 54 A                                                                                                                                                                                                                                                                                                                                                                                       |
| 1990 48 A   1990 49 A   1990 56 A   2026 38.4 A   2026 43.4 A   2026 51.3 A   2032 4.5 C   2076 41 A   2076 52 A   2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1990 49 A   1990 56 A   2026 38.4 A   2026 43.4 A   2026 51.3 A   2032 4.5 C   2076 41 A   2076 52 A   2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1990 56 A   2026 38.4 A   2026 43.4 A   2026 51.3 A   2032 4.5 C   2076 41 A   2076 52 A   2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2026 38.4 A   2026 43.4 A   2026 51.3 A   2032 4.5 C   2076 41 A   2076 52 A   2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2026   43.4   A     2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2026   51.3   A     2032   4.5   C     2076   41   A     2076   52   A     2116   54   A                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2032 4.5 C   2076 41 A   2076 52 A   2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2076 41 A<br>2076 52 A<br>2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2076 52 A<br>2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2116 54 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2168 103.7 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2168 109.3 C<br>2168 113.9 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2174 39.39 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2191 20.62 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2191 44.185 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2194 46.51 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2194 49.78 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2194 57.72 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2202 41.18 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2203 9.92 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2207 20 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2207 26.5 A<br>2211 19 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| 2211 | 26     | А |
|------|--------|---|
| 2211 | 32     | А |
| 2215 | 80.55  | В |
| 2230 | 44.7   | А |
| 2230 | 51.64  | А |
| 2251 | 70     | В |
| 2259 | 35.96  | Α |
| 2260 | 25.6   | Α |
| 2284 | 25     | А |
| 2307 | 44.5   | Α |
| 2317 | 61.997 | А |
| 2324 | 28.5   | А |
| 2344 | 2.1103 | С |

| Mean   | 41.2  |
|--------|-------|
| Median |       |
| (Ref)  | 40.8  |
| STDev  | 24.5  |
| Min    | 0     |
| Max    | 113.9 |

| RICE A  | RICE A  | RICE B  | RICE B  | RICE C  | RICE C  |
|---------|---------|---------|---------|---------|---------|
| (Lower) | (Upper) | (Lower) | (Upper) | (Lower) | (Upper) |
| 23.2    | 69.7    | 16.4    | 93.8    | <16.4   |         |



Sample 4 (14BSEM4) - Medium density (30.0 fibres/mm²) - amosite fibres

| LAB<br>NUMBER | TOTAL<br>ASBESTOS    | BAND<br>(RICE) |
|---------------|----------------------|----------------|
| 139           | 28.29                | А              |
| 139           | 32.19                | А              |
| 709           | 44                   | А              |
| 818           | 29.8                 | А              |
| 818           | 32.8                 | А              |
| 1181          | 27                   | А              |
| 1277          | 21.3                 | А              |
| 1458          | 27                   | А              |
| 1458          | 34                   | А              |
| 1507          | 53.01                | Α              |
| 1546          | 19.771               | Α              |
| 1558          | 36                   | А              |
| 1562          | 32.5                 | А              |
| 1562          | 33.9                 | Α              |
| 1562          | 1569 35<br>1575 18.6 |                |
| 1569          |                      |                |
| 1575          |                      |                |
| 1575          |                      |                |
| 1575          | 26.5                 | А              |
| 1592          | 33                   | А              |
| 1640          | 33.5                 | Α              |
| 1646          | 45.818               | А              |
| 1649          | 20.7                 | Α              |
| 1680          | 24                   | А              |
| 1680          | 27.3                 | Α              |
| 1680          | 35                   | А              |
| 1715          |                      |                |
| 1717          | 0                    | С              |
| 1717          | 0                    | С              |
| 1717          | 0                    | С              |
| 1718          | 13                   | В              |
| 1718          | 15.5                 | А              |
| 1734          | 38                   | Α              |
| 1734          | 41                   | Α              |
| 1738          | 35.2                 | А              |
| 1745          | 44.3                 | А              |
| 1759          | 0                    | С              |
| 1759          | 0.9                  | С              |
| 1759          | 1.3                  | С              |
| 1768          | 37.72                | Α              |
| 1768          | 44.52                | А              |



| 1768 | 46.63  | А |
|------|--------|---|
| 1774 | 34     | А |
| 1776 | 26     | А |
| 1812 | 18     | А |
| 1812 | 20.5   | Α |
| 1812 | 22     | А |
| 1814 | 37.1   | А |
| 1826 | 57.74  | В |
| 1832 | 27     | А |
| 1832 | 30.5   | Α |
| 1836 | 15.95  | А |
| 1888 | 7      | С |
| 1910 | 23     | Α |
| 1938 | 24     | Α |
| 1958 | 28.2   | Α |
| 1963 | 10     | В |
| 1963 | 19     | А |
| 1966 | 35.6   | А |
| 1984 | 43.29  | А |
| 1984 | 43.29  | А |
| 1984 | 47.69  | А |
| 1990 | 36     | А |
| 1990 | 37     | А |
| 1990 | 43     | А |
| 2026 | 51.3   | А |
| 2026 | 51.7   | А |
| 2032 | 12.5   | В |
| 2076 | 15     | В |
| 2076 | 27     | А |
| 2116 | 30     | A |
| 2159 | 40.099 | A |
| 2168 | 21.3   | A |
| 2168 | 22.7   | A |
| 2168 | 35.2   | A |
| 2174 | 33.9   | A |
| 2191 | 27.49  | A |
| 2191 | 34.36  | A |
| 2194 | 10.61  | В |
| 2194 | 24.48  | A |
| 2194 | 31.82  | A |
| 2202 | 26.47  | A |
| 2202 | 33.73  | A |
| 2207 | 42.5   | A |
| 2211 | 27.5   | A |
| 2211 | 28.5   | A |
| 2211 | 32     | A |
| 2211 | 32     |   |



| 2215 | 64.6   | В |
|------|--------|---|
| 2230 | 36.74  | А |
| 2230 | 37.73  | Α |
| 2251 | 30     | Α |
| 2259 | 34.01  | Α |
| 2260 | 39.3   | А |
| 2284 | 25     | А |
| 2307 | 29.5   | А |
| 2317 | 32.475 | А |
| 2324 | 26.5   | Α |
| 2332 | 0      | С |
| 2344 | 7.3861 | С |

| Mean   | 28.9 |
|--------|------|
| Median |      |
| (Ref)  | 30.0 |
| STDev  | 13.2 |
| Min    | 0    |
| Max    | 64.6 |

| RICE A  | RICE A  | RICE B  | RICE B  | RICE C  | RICE C  |
|---------|---------|---------|---------|---------|---------|
| (Lower) | (Upper) | (Lower) | (Upper) | (Lower) | (Upper) |
| 15.3    | 55.3    | 9.8     | 77.0    | <9.8    | >77.0   |

#### **DATA ANALYSIS**

### Regular Inter-laboratory Counting Exchange (RICE) Criteria

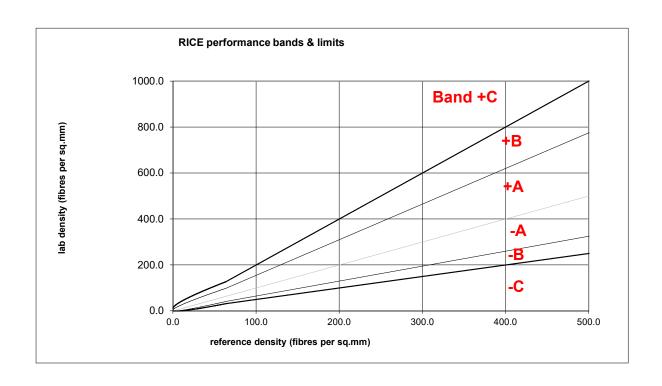
Where **R** is the reference value – in this case the Median value.

High density samples (R > 63.7 fibres/mm<sup>2</sup>)

Target band A: > 0.65R to < 1.55R

Target band B: > 0.50R to 0.65R [band -B] and > 1.55R to 2.00R [band +B]

Target band C: < 0.50R [band -C] and > 2.00R [band +C]


Low density samples  $(R \le 63.7 \text{ fibres/mm}^2)^*$ 

Target band A:  $(\sqrt{R}-1.57)^2$  to  $(\sqrt{R}+1.96)^2$  [band A]

Target band B:  $<(\sqrt{R}-2.34)^2$  to  $(\sqrt{R}-1.57)^2$  [band -B]  $>(\sqrt{R}+1.96)^2$  to  $(\sqrt{R}+3.30)^2$  [band +B]

Target band C:  $<(\sqrt{R}-2.34)^2$  [band -C]  $>(\sqrt{R}+3.30)^2$  [band +C]

The plot below shows the positions of the performance limits in relation to the reference counts up to reference density 500 fibres/mm<sup>2</sup>.



<sup>\*</sup> For samples less than 5.5 fibres.mm<sup>-2</sup> the lower limit is set to zero when the component within the brackets ( $\sqrt{R}$ -n) is less than zero.